
sRGB, AdobeRGB and ProPhotoRGB

The merits of sRGB, AdobeRGB (aRGB) and ProPhotoRGB colour spaces are frequently the subject of

debate and some confusion. Attempts by the layman to understand the basic principles behind

these colour spaces and their associated profiles are often hindered by the complex, 3-dimensional

mathematical transforms used to describe them.

In an attempt to understand the basic principles I created a simpler, linear, 1-dimensional, fictional

analogy which describes 3 methods of encoding vehicle speed called (to help the analogy) sMPH,

aMPH and ProMPH.

sMPH

Suppose engineers wanted to record the variation in forward speed of a motor vehicle at 1 second

intervals over the duration of each journey. The vehicle was equipped with a sensor that provided

speed readings from 0.0 to 100.0 mph with 1 decimal place at 1 second intervals. Realising that they

didn’t need 0.1 mph precision and that they needed to minimise the memory storage requirements

for long journeys, the engineers decided they wanted to store each speed reading in a single 8 bit

byte (which can only store integer values from 0-255). To achieve this they devised a simple

encoding method which multiplies the sensor readings by 2.5 and then rounding to the nearest

whole number. They called this process “Standard MPH encoding” or sMPH for short.

sMPH encoded reading = ROUND(2.5 x Sensor reading)

A speed of 100.0 mph can therefore be encoded in a single 8 bit byte with a value of 250. To recover

the original data, the process is simply reversed. They called this process sMPH decoding.

Decoded reading = sMPH encoded reading / 2.5

sMPH encoding allowed speed readings from 0.0 - 100.0 mph to be stored as single 8 bit bytes with

values ranging from 0 - 250. The precision has however been reduced from 0.1mph to 1/2.5 = 0.4

mph. It is this reduction in precision that allows the data to be compressed for storage.

Realising that requirements might change in the future, the engineers decided that files of sMPH

data should have details of the sMPH encoding/decoding process (“the sMPH profile”) embedded in

the file. This would ensure that future users of the data files would know the data inside was sMPH

encoded and they would know the correct way to recover (decode) the data.

The sMPH encoding and decoding process is shown schematically in Figure 1. Note that due to the

data compression, 4 different speed values (e.g. 0.2, 0.3, 0.4 and 0.5mph) are typically encoded (and

hence decoded) as the same value (e.g. 0.4 mph).

Figure 1

aMPH

As technology advanced engineers decided that they needed to record speeds of vehicles that could

go faster than 100mph (up to 125mph) using a similar (1 byte/reading) file format. To accomplish

this they devised a new encoding and decoding method which they called “Advanced MPH” or

aMPH for short. To cover the extended speed range they changed the encoding and decoding factor

from 2.5 to 2.0

aMPH encoded reading = ROUND(2.0 x Sensor reading)

A speed of 125.0 mph can therefore be aMPH encoded in an 8 bit byte with a value of 250. To

recover the original data, the process is simply reversed. They called this process is aMPH decoding.

Decoded reading = aMPH encoded reading / 2.0

Figure 2

aMPH encoding allows speed readings from 0.0 - 125.0 mph to be stored as single 8 bit bytes with

values ranging from 0 - 250. The precision has however been further reduced by the extra data

compression from 0.4 mph (under sMPH encoding) to 0.5mph (under aMPH encoding).

To allow aMPH files to be distinguished from sMPH files they embedded the details of the “aMPH

encoding/decoding” process (or aMPH profile) in the file. This would ensure that future users of the

data files would automatically know the data inside was aMPH encoded and the correct way to

recover (decode) the data, and should not mistakenly use the sMPH process.

The aMPH encoding and decoding process is shown schematically in Figure 2. Note that typically 5

different speed values (e.g. 0.3, 0.4, 0.5, 0.6 and 0.7 mph) are now encoded (and hence decoded) as

the same value (0.5 mph). So although aMPH files can hold data for a 25% wider speed range than

sMPH, the precision to which those speeds are recorded has now been reduced by 20%.

ProMPH

As technology advanced again it was decided that the system needed to be further adapted to allow

speeds up to 150mph to be encoded and decoded. This was achieved by changing the encoding and

decoding factor to 5/3 and they called this process ProMPH encoding.

ProMPH encoded reading = ROUND(5 x Sensor reading / 3)

A speed of 150.0 mph can therefore be encoded in an 8 bit byte with a value of 250. To recover the

original data, the process is simply reversed. They called this process is ProMPH decoding.

Decoded reading = 3 x ProMPH encoded reading / 5

Note that using ProMPH encoding has increased the range of speeds that can be stored by 50%

(relative to sMPH). But this reduces the precision to which speed is recorded by 33% to 0.6mph.

Realising this reduction was becoming significant the engineers recommended that for high

precision applications ProMPH data should be stored in double bytes (16 bit mode).

Analogy with sRGB, aRGB and ProPhotoRGB

If sMPH, aMPH and ProMPH are conceptually replaced by sRGB, aRGB and ProPhotoRGB and vehicle

speed is replaced with richness of colour (faster speed = richer colour), it’s possible to draw parallels

between the process described above and those used to store image data. When an sRGB image file

is created, the image sensor data is encoded using the sRGB standard and the sRGB profile

information is (usually) embedded in the file so that the data can be correctly decoded

automatically. Similarly the aRGB and ProPhotoRGB standards were devised to allow richer and

richer colours to be stored in the file, in a similar way to which aMPH and ProMPH allow higher and

higher speeds to be encoded.

The power of the analogy becomes clear when analysing what happens when files are decoded using

a different standard to that used to encode the data. For example, what happens if sRGB image data

is decoded using aRGB profile, or vice versa? These two examples are considered below.

sRGB data decoded using aRGB profile

This is analogous to using the aMPH process to decode speed data which was encoded with sMPH.

The effects of this are shown in the Figure 3 below. Note how a true vehicle speed of 100mph has

been incorrectly decoded as 125 mph. The decoded data indicates the vehicle is going faster than it

really was. Therefore, by analogy, when sRGB data is decoded (rendered) using an aRGB profile, the

colours will be displayed incorrectly and will appear richer than they should. The situation gets

worse if sRGB files are rendered using a ProPhotoRGB profile as the colours will appear richer still.

aRGB data decoded using sRGB profile

This is analogous to using the sMPH process to decode speed data which was encoded with aMPH.

The effects of this are shown in the Figure 4 above. Note how a true vehicle speed of 125mph has

been incorrectly decoded as 100 mph. The decoded data indicates the vehicle is going slower than it

really was. Therefore, by analogy, when aRGB data is decoded (rendered) using an sRGB profile, the

colours will be displayed incorrectly and will appear more muted than they should. The situation

gets worse if a ProPhotoRGB file is rendered using a sRGB profile as the colours will appear even

more muted.

Missing profiles, profile conversion and profile assignment

If files are correctly encoded and include the relevant profile, incorrect decoding errors shouldn’t

occur. But there are various scenarios where problems can arise, or compromises are required.

Missing profiles

If the profile used to encode the data is missing from the file, then it’s impossible to know how the

data should be decoded. Many systems assume sRGB as a default profile and will apply that profile

to decode the data. This is fine if the data was encoded using sRGB, but if aRGB or ProPhotoRGB was

used instead, then the decoded colours will be rendered incorrectly and will appear more muted

than they should (analogous to the scenario in Figure 4). To avoid creating files with missing profiles

it is advisable to embed the colour profile in the image file when saving. Photoshop provides a tick

box to “Embed colour profile” when saving files in the file saving menu. Photoshop can also be set to

give warnings when opening files with missing profiles and ask what to do. These settings are found

in the Color Management Polices section of the Edit>Color Settings… menu. It is suggested that all

boxes in this section should be ticked, as shown in Figure 5.

Figure 5

Profile Assignment

Photoshop allows user to assign a profile (Edit>Assign profile…) to an image with a missing profile, or

to overwrite the existing profile. This option must be used with caution. Colours in the image will be

rendered incorrectly if the profile assigned to an image is not the same as the one used to originally

encode the image. Assigning a different profile can be used creatively to make colours appear richer

or more muted, but it may be more convenient to adjust the saturation or vibrance sliders instead as

these allow more control. The “Convert to Profile...” option should be used to change an image

from one profile to another without significantly altering the colours.

Profile Conversion

Photoshop allows users to convert (Edit>Convert to Profile…) images from one profile to another.

This operation works as follows. Firstly the image data is decoded using the original profile, then

(after some adjustment if required*) the data is encoded using the new profile. *Although the

conversion process may have some effect on the colours in the image, there are numerous settings

that can be used to control any adjustments that may be needed, as shown in the Conversion Options

section of the menu shown in Figure 5. A detailed description of the various options is currently

beyond the scope of this document, but there are some potential compromises to be aware of.

· If a ProPhotoRGB image contains a very wide range of colours, then converting to a colour

space with less range (e.g. sRGB) will cause some alteration in colour. Colours maybe

clipped or de-saturated slightly in an attempt to “squeeze” the larger colour range into the

smaller colour space. This process is not reversible. Converting a ProPhotoRGB image to

sRGB loses colour information which cannot be recovered by converting from sRGB back

ProPhotoRGB.

· A similar compromise occurs, but to a lesser degree when converting from ProPhotoRGB to

aRGB, or from aRGB to sRGB. Again the process is not reversible.

Although these compromises may sound daunting a few key points should be remembered.

· The visual differences between correctly rendered sRGB, aRGB and ProPhotoRGB images are

relatively small. Indeed, on consumer grade monitors and printers, they can be very difficult

to spot. Even on professional grade monitors and printers the visual difference is often far

less noticeable than the relative sizes of the colour spaces might suggest. Figure 6 gives an

example. This Figure was produced by creating ProPhotoRGB, aRGB and sRGB versions of the

same RAW image of a Passport Colour Checker Target and then correctly rendering them all

in Photoshop and taking a screenshot. Obviously there are limitations in this comparison as

all images have been rendered on a monitor. Therefore, to overcome this limitation I have

posted the jpeg files for each image on-line at https://postimg.cc/gallery/1lm43xh4m/ The

images can be downloaded and compared on screen or as printouts.

Figure 6

https://postimg.cc/gallery/1lm43xh4m/

· The visual differences between incorrectly rendered images are much more noticeable and

clearly visible on screen, as illustrated by the Figure 7 below. This figure was produced by

creating ProPhotoRGB, aRGB and sRGB versions of a RAW image of a Passport Colour Checker

Target and then assigning the wrong profiles to some of them. The central image is a

screenshot of the sRGB image rendered in Photoshop using the correct sRGB profile. The

surrounding (incorrectly rendered) images are screenshots of the sRGB, aRGB and ProPhoto

images rendered in Photoshop with the wrong profile is assigned, as indicated. Note that the

differences are now much more obvious than those shown in Figure 6. The jpeg files for each

of these images are also available on-line at the URL above.

Figure 7

Synthesised images

Some of the images on the internet, which are used to demonstrate the differences between each

colour spaces, are produced by generating various spectrum gradients in sRGB, aRGB and

ProPhotoRGB workspaces using Photoshop. These images need to be interpreted with caution as

they contain a large range of mathematically produced colours which extend right to the edges of

each colour space, to deliberately emphasise the differences between these colour spaces. Such

colours can lie outside the range that typical digital cameras are sensitive to, or appear in normal

scenes. The spectrum gradient data created by the gradient fill tool in Photoshop is also not

encoded (converted) to suit a particular colour space. The same numerical RGB values are simply

inserted into the image and then decoded using whatever colour space profile is assigned to the

image. Every pixel generated contains at least one colour that is fully saturated (value = 255). This is

analogous to filling the vehicle speed data file with values from 0-250 and then examining how each

decoding method (sMPH, aMPH or ProMPH) interprets this data.

Examples of a spectrum gradient crossed with a luminosity gradient (often referred to as a Granger

chart) created in each colour space are shown in Figure 8. (16 bit TIFF versions of these images are

also available online at the same URL). There are clear visible differences between them.

Figure 8

Examples of simple spectrum gradients created in each colour space are shown in Figure 9. (16 bit

TIFF versions of these images are also available online at the same URL). Again, there are clear visible

differences between them.

Figure 9

Comparisons between synthesised images like these are often used to justify the decision to use

ProPhotoRGB.

However…. the differences between digital camera images of real scenes, taken in RAW format, and

then processed in each of the colour spaces and correctly rendered will be less noticeable, especially

when viewed or printed on consumer grade monitors and printers. This is illustrated by the following

images of a real spectrum created by sunlight passing through a prism and projected onto a white

sheet of paper to produce a saturated sweep of natural colours. The RAW image was processed to

produce sRGB, AdobeRGB and ProPhotoRGB versions and saved as 16 bit TIFs at the same URL.

Figure 10 shows a montage of the three images.

Figure 10

On my screen, and when printed on my printer, the three files are virtually indistinguishable.

Perhaps the differences are more noticeable on better monitors or printers (the 16 bit TIFF files can

be downloaded from the same URL to make your own comparisons). Maybe I need a more

demanding (but still realistic) test image? (I’m working on that!!)

